Dipl.-Geograph Ingo-Holger Meyer Dr. rer. nat. Mark Overesch

Erläuterungsbericht zum **Wasserwirtschaftlichen Gesamtkonzept**

Projekt: 3415-2019

Biogasanlage Thomasburg

Biogas Thomasburg GmbH & Co. KG **Antragsteller:**

Industriering 10a 48393 Lohne

Genehmigungsbehörde: Landkreis Lüneburg

Auf dem Michaeliskloster 4

21335 Lüneburg

Verfasser: Büro für Geowissenschaften

Bernard-Krone-Straße 19

48480 Spelle

Bearbeiter: Dr. rer. nat. Mark Overesch

Datum: 13. Juni 2019

Fax: 0 59 52 / 90 33 91

1 Veranlassung

Die Biogas Thomasburg GmbH aus Lohne betreibt eine Biogasanlage am Hagenweg in 21401 Thomasburg. Die Biogasanlage soll um einen zweiten Gärrestspeicher und eine Gärrestseparation erweitert werden.

An der Biogasanlage wird auf Fahrsilos Maissilage gelagert. Das auf den Fahrsilos anfallende Niederschlagswasser wird aktuell über einen Schmutzwasserschacht in die Behälter der Anlage gepumpt. Zukünftig sollen auch alle an die Fahrsilos angrenzenden Fahrwege an dieses Entwässerungssystem angeschlossen werden. Weiterhin sollen Zwischenspeicher für belastetes Niederschlagswasser geschaffen werden, um das Wasser über einen möglichst langen Zeitraum getrennt vom Gärrest auf landwirtschaftlichen Flächen verwerten zu können. Das Niederschlagswasser, welches auf den übrigen, nicht mit Silagesickersaft o.Ä. belasteten Flächen anfällt, soll versickert werden.

Das Büro für Geowissenschaften M&O GbR, Spelle & Sögel, wurde mit der Erstellung eines entsprechenden, angepassten Wasserwirtschaftlichen Gesamtkonzeptes für die Biogasanlage und der Erstellung des vorliegenden Erläuterungsberichtes beauftragt.

2 Lage der Fläche

Die zu entwässernden Flächen befinden sich am Hagenweg in 21401 Thomasburg. Die Biogasanlage liegt auf dem Flurstück 13/6, Flur 3 in der Gemarkung Thomasburg. Der neue Gärrestspeicher 2 soll auf dem Flurstück 2/2 errichtet werden.

3 Boden- und Grundwasserverhältnisse

Der nördliche Teilbereich der Biogasanlage und der Standort des neuen Gärrestspeichers 2 sind laut Geologischer Karte 1:25.000 im Tiefenbereich bis 2 m unter GOK von glazifluviatilen Sanden geprägt, welche stellenweise von Geschiebedecksand überlagert werden. Im südlichen Teilbereich der Biogasanlage stehen laut Geologischer Karte in diesem Tiefenbereich Geschiebedecksande und darunter Geschiebelehm an. Als Bodentyp ist in der Bodenkarte von Niedersachsen 1:50.000 in den Bereichen, in denen oberflächennah Geschiebelehm auftritt, als Bodentyp Pseudogley-Braunerde ausgewiesen und ansonsten Podsol-Braunerde.

Der Standort der Biogasanlage wurde im Rahmen eines Baugrundgutachtens durch das Büro Buchheim aus Gägelow mittels Rammkernsondierungen bis in 4 bis 6 m Tiefe erkundet. Die wesentlichen Auszüge des Gutachtens sind in Anlage 4 dargestellt. Allein in den Sondierungen BS 2, 4 und 9 wurde oberflächennah, d.h. ab 0,45 bzw. 0,50 m unter GOK Geschiebelehm angetroffen. In den anderen Sondierungen wurde kein Geschiebelehm

bzw. Schluff / Ton angetroffen oder diese bindigen Bodenmaterialien traten hier erst ab einer Tiefe von ≥1,5 m unter GOK auf. In diesen Sondierungen wurden unter dem bis 0,50 m mächtigen, humosen, sandigen Oberboden überwiegend schluffige Feinsande, feinsandige, schluffige bis grobsandige Mittelsande und z.T. auch mittelsandige, kiesführende Grobsande angetroffen.

Der Standort der Versickerungsmulde 4 an dem neuen Gärrestspeicher 2 wurde durch das Büro für Geowissenschaften durch zwei weitere Rammkernsondierungen bis 2 m unter GOK geprüft. Hierbei traten an der Oberfläche 0,3 bis 0,4 m starke, humose Oberböden aus Feinsand auf (s. Bohrprofile, Anlage 5). Darunter folgen mittelsandige Feinsande, die von grobsandigen, kiesführenden Mittelsanden unterlagert werden. In der Sondierung BS neu 1 wurde zwischen 1,95 und 2,0 m unter GOK ein toniger, sandiger Schluff angetroffen, bei dem es sich vermutlich um Geschiebelehm handelt.

Der Grundwasserspiegel liegt laut Hydrogeologischer Karte 1:50.000 im Mittel bei >22,5 bis 25 mNN. Aus der Geländehöhe von 36 bis 41 mNN resultieren mögliche Grundwasserflurabstände zwischen 11 und 18,5 m. Entsprechend wurde in den am 17.03.2008 bzw. am 09.04.2019 bis in eine Tiefe zwischen 2 und 6 m durchgeführten Bohrungen kein Grundwasser angetroffen. Schichtwasser wurde nur in den am 17.03.2008 durchgeführten Sondierungen BS 3 und BS 5 oberhalb bzw. in schluffigen Feinsanden bzw. tonigen Schluffen angetroffen.

Der Durchlässigkeitsbeiwert (k_f) des Bodens wurde im Rahmen des Baugrundgutachtens anhand von Korngrößenanalysen ermittelt. Die Werte wurden aus der Kornsummenverteilung nach HAZEN abgeleitet (s. Anlage 4). Für die im Bereich der Bohrung BS 1 zwischen 1,5 und 4,0 m unter GOK anstehenden grob- und feinsandigen Mittelsande ergibt sich so ein k_f -Wert von 4,5 x 10^{-4} , für die schwach schluffigen Feinsande zwischen 1,5 und 3 m unter GOK im Bereich der Sondierung BS 3 ein k_f -Wert von 4,0 x 10^{-5} m/s. Für die Bemessung von Versickerungsanlagen sind diese Werte gem. DWA-A 138 (DWA, 2005) mit dem Faktor 0,2 zu multiplizieren. Hieraus resultiert ein k_f -Wert von 9 x 10^{-5} m/s bzw. 8 x 10^{-6} m/s. Der stellenweise angetroffene Geschiebelehm bzw. tonige Schluff weist erfahrungsgemäß einen k_f -Wert von <1 x 10^{-7} m/s auf.

Insgesamt ist die oberflächennahe Geologie am betrachteten Standort rel. heterogen. Es ist jedoch davon auszugehen, dass im Bereich der Versickerungsmulden überwiegend eine ausreichend mächtige Sandschicht über den gering durchlässigen, bindigen Bodenmaterialien vorliegt, um das anfallende Niederschlagswasser schadlos versickern zu können. Für die im Folgenden beschriebene Bemessung von Versickerungsanlagen am betrachteten Standort wird durchweg der geringere der beiden ermittelten k_f -Werte von 8×10^{-6} m/s angesetzt.

4 Erläuterung und hydraulischer Nachweis der geplanten Entwässerung

Der in Anlage 2 gezeigte Entwässerungsplan sowie die im Folgenden erläuterte Dimensionierung der vorhandenen Entwässerungseinrichtungen basieren auf einem Lageplan, der durch das Planungsbüro von Lehmden aus Saerbeck erstellt worden ist, sowie auf Angaben des Anlagenbetreibers. Die Größe, Versiegelung und Abflussbeiwerte der einzelnen Flächen sind Anlage 6 zu entnehmen. Querschnitte durch die Entwässerungseinrichtungen sind in Anlage 3 dargestellt.

Das auf den Fahrsilos 1 bis 3 anfallende Niederschlagswasser wird in einer Entwässerungsrinne bzw. mittels Abläufen in einer asphaltierten Rinne gefasst und über Grundrohrleitungen in die Schmutzwasserschächte eingeleitet.

Das auf der Folienabdeckung der auf dem Fahrsilo gelagerten Silage anfallende Niederschlagswasser wird an den Außenseiten über die Betonwände des Fahrsilos geführt und ungezielt bzw. in den Versickerungsmulden 1 und 2 versickert. Im Übergangsbereich zu den Fahrwegen 1 bis 5 gelangt der Niederschlagsabfluss der Fahrsilos in das Entwässerungssystem der Siloplatten und damit in die Schmutzwasserschächte.

Der pot. mit Silagebestandteilen oder separiertem Gärrest belastete Niederschlagsabfluss der Fahrwege 1 bis 5 sowie der Abfluss der angrenzenden Pflasterflächen P1 bis P3 sollen ebenfalls über Abläufe bzw. eine Entwässerungsrinne und eine Grundrohrleitung in die Schmutzwasserschächte eingeleitet werden. Dies wird im Falle der Fahrwege 1 bis 3 und einem Teil des Fahrweges 4 schon aktuell praktiziert. Das auf weiteren Bereichen des Fahrweges 4 und auf dem Fahrweg 5 anfallende Niederschlagswasser wird jedoch zurzeit noch auf angrenzende unversiegelte Flächen geführt und hier versickert. Da zu erwarten ist, dass aufgrund der geplanten Lagerung von separiertem Gärrest auch auf dem angrenzenden Fahrweg 5 und ggf. auf dem Fahrweg 4 relevante Verschmutzungen auftreten werden, soll künftig auch das hier anfallende Niederschlagswasser in den Schmutzwasserschacht geleitet werden. Hierzu werden am Rand dieser Fahrwege zusätzliche Abläufe installiert und der Randbereich der Flächen wird mit einer Aufkantung versehen.

Das auf der Teilfläche "b" der Dachfläche des Technikgebäudes anfallende Niederschlagswasser wird in einer Dachrinne gefasst und über Fallrohre und Grundrohrleitungen ebenfalls in die Schmutzwasserschächte geführt.

Aktuell ist zur Aufnahme des verschmutzten Niederschlagsabflusses ein Schmutzwasserschacht mit einem Speichervolumen von 16 m³ vorhanden. Es ist geplant, einen weiteren, 10 m³ fassenden Schmutzwasserschacht zu ergänzen, welcher oben mit dem vorhandenen Schmutzwasserschacht verbunden wird (s. Querschnitt, Anlage 3). Aus

den beiden Schmutzwasserschächten wird das Niederschlagswasser aktuell über Druckleitungen wahlweise in den Gärrestspeicher 1 oder den Annahmebehälter gepumpt. Zukünftig soll es zudem in die neuen Wasserspeicher gepumpt werden können.

Zur separaten Zwischenpeicherung von verschmutztem Niederschlagswasser sollen auf dem Fahrsilo 1 als Wasserspeicher drei Container aufgestellt werden, welche unten untereinander verbunden werden. In den Containern wird ein Speichervolumen von insgesamt 210 m³ zu Verfügung stehen (3 x 70 m³). Aus den Containern wird das Wasser mittels Güllefass entnommen und außerhalb der Sperrfristen auf landwirtschaftlichen Nutzflächen ausgebracht. Das in den Gärrestspeicher bzw. den Annahmebehälter eingeleitete Niederschlagswasser wird ebenfalls mittels Güllefass entnommen und außerhalb der Sperrfristen zusammen mit dem Gärrest auf landwirtschaftlichen Nutzflächen ausgebracht.

Das auf der Betonplatte der Befüllstation zwischen Annahmebehälter und Gärrestspeicher 1 anfallende Niederschlagswasser wird in einen Speicherschacht (ca. 1 m³) geführt und hier zwischengespeichert. Aus dem Schacht wird es mittels Güllefass entnommen und auf landwirtschaftlichen Nutzflächen ausgebracht. In der ausbringungsfreien Zeit wird es in die Wasserspeicher oder die Gärrestspeicher verbracht.

Das auf den Dachflächen des Fermenters, des Gärrestspeichers 1 und des Annahmebehälters sowie auf dem Pflaster P4 anfallende Niederschlagswasser wird auf die angrenzenden Grünflächen geführt und hier ungezielt versickert. Das auf der Teilfläche "a" der Dachfläche des Technikgebäudes anfallende Niederschlagswasser wird über Dachrinnen und Fallrohre auf die angrenzende Bodenoberfläche geführt und gelangt so in die Versickerungsmulde 3. Das auf dem Fahrweg 6 anfallende Niederschlagswasser wird auf den Hagenweg geführt und versickert hier im Wegeseitenraum. Das auf der Dachfläche des neuen Gärrestspeichers 2 anfallende Niederschlagswasser wird zunächst auf die angrenzende Bodenoberfläche geführt und gelangt hierüber in die Versickerungsmulde 4, wobei ein Teil des Abflusses auch ungezielt unmittelbar am Behälter versickern wird.

Anlage 7 zeigt die hydraulische Bemessung der zur Niederschlagsentwässerung genutzten Rohrleitungen gem. PRANDTL-COLEBROOK. Es wurde eine Bemessungsregenspende von 102,2 l/s/ha $(r_{15,n=1})$ gewählt. Zudem wurde die gesamte Größe aller angeschlossenen Flächen angesetzt, obwohl die Fahrsilos i.d.R. aufgrund der Abdeckung der Silage nur teilweise angeschlossen sind. Die Berechnungen zeigen, dass die Rohrleitungen SW 1 und 2 nicht ausreichend dimensioniert sind, den angesetzten Bemessungsabfluss $(r_{15,n=1})$ rückstaulos abzuführen. Es ist daher damit zu rechnen, dass sich im Bemessungsfall Niederschlagswasser bis auf die angeschlossenen Flächen zurückstaut.

Das an der Oberfläche zurückgestaute Wasser wird überwiegend entsprechend des vorliegenden Geländegefälles Richtung Zufahrt abfließen. In diesem Bereich soll der neue

Schmutzwasserschacht 2 installiert werden, an den mit einer ausreichend groß dimensionierten Rohrleitung (SW3, DN300) die Querrinne im Bereich der Zufahrt angeschlossen wird. Auf diese Weise soll verhindert werden, dass aufgrund der zu gering dimensionierten Rohrleitungen verschmutztes Niederschlagswasser auf angrenzende, über eine Versickerung entwässerte Flächen gelangt.

Anlage 8 zeigt die Bemessung der Schmutzwasserschächte bzw. der hierin installierten Tauchpumpen gem. DWA-A 117 mittels Niederschlagsdaten aus KOSTRA-DWD. Auch hierbei wurde die gesamte Größe aller angeschlossenen Flächen angesetzt, obwohl die Fahrsilos i.d.R. aufgrund der Abdeckung der Silage nur teilweise an die Schächte angeschlossen sind. Das nutzbare Speichervolumen der beiden Schächte von zusammen 26 m³ reicht zusammen mit dem Speichervolumen in den angeschlossenen Rohrleitungen von 1,7 m³ bei einer Leistung der beiden Tauchpumpen von zusammen 17,0 l/s aus, um das im Bemessungsfall (r_{20,n=1}) anfallende Niederschlagswasser schadlos abführen zu können.

Anlage 9 zeigt die Berechnung der erforderlichen Speicherkapazität für verschmutztes Niederschlagswasser, welche aus der Einleitung von den Fahrsilos und weiteren Flächen in die Behälter der Anlage resultiert. Angesetzt wurde ein speicherrelevanter Zeitraum von 3 Monaten, in welchem eine Ausbringung auf landwirtschaftlichen Nutzflächen nicht möglich ist. In den weiteren 9 Monaten soll das anfallende Niederschlagswasser in die Wasserspeicher (Container) geleitet und regelmäßig auf landwirtschaftlichen Flächen aufgebracht werden. Die Berechnung der Speicherkapazität erfolgte durch Umrechnung der jährlichen, auf den betroffenen Flächen anfallenden Niederschlagsmenge (DWD-Station Reinstorf-Holzen, Mittelwert Zeitraum 1981-2010) auf den angesetzten Zeitraum von 3 Monaten. Es wurde davon ausgegangen, dass in diesem speicherrelevanten Zeitraum 50 % der Fahrsilos und 100 % der weiteren angeschlossenen Flächen in die Behälter der Anlage entwässert werden. Bei den weiteren 50 % der Fahrsilos ist anzunehmen, dass sie im speicherrelevanten Zeitraum mit Silage bedeckt sind, so dass das auf der Folienabdeckung anfallende Niederschlagswasser auf die angrenzenden Flächen geführt und hier versickert wird. Aus diesem Ansatz ergibt sich notwendige Speichermenge eine Niederschlagswasser in den Behältern der Anlage von 533 m³.

Die Anlagen 10.1 bis 10.4 zeigen die hydraulische Berechnung der Versickerungsmulden gem. DWA-A 138 (DWA, 2005) mittels Niederschlagsdaten aus KOSTRA-DWD. Als Einzugsgebiet wurden bei den Versickerungsmulden 1 und 2 die Hälfte des Fahrsilos 1 bzw. 3 (nur Folienabdeckung Silage) angesetzt. Bei der Versickerungsmulde 3 wurde die Teilfläche "a" des Technikgebäudes, bei der Versickerungsmulde 4 die gesamte Dachfläche des Gärrestspeichers 2 angesetzt. Entsprechend der Ausführungen in Abschnitt 3 wurde ein k_f -Wert von 8 x 10^{-6} m/s angesetzt. Das Verhältnis zwischen undurchlässiger angeschlossener Fläche zur Versickerungsfläche (A_v/A_s) liegt zwischen 2 und 8. Der

Wasserstand erreicht im Bemessungsfall (n=0,2) eine Höhe zwischen 7 und 26 cm. Hierbei verbleibt in den 0,4 bzw. 0,5 m Tiefen Mulden ein Mindestfreibord von 14 cm.

Alle zur Entwässerung der Fahrsilos und pot. verschmutzten Fahrwege genutzten Rohrleitungen, Abläufe und Schächte werden, sollte dies aktuell nicht der Fall sein, dauerhaft flüssigkeitsdicht und medienbeständig ausgeführt. Alle Betonwände bzw. Aufkantungen an den Fahrsilos sind bzw. werden dauerhaft flüssigkeitsdicht und säurebeständig an die angrenzenden Asphalt-/Betonflächen angebunden.

5 Bewertung und Behandlung des Niederschlagsabflusses

Auf den Fahrwegen, den Lagerflächen und der Folienabdeckung der Maissilage, welche über eine Versickerung entwässert werden, ist aufgrund der Befahrung mit landwirtschaftlichen Fahrzeugen und / oder der Verwehung von Maissilage von einer pot. starken Verschmutzung gem. DWA-M 153 (DWA, 2007) auszugehen (F6). Weiterhin wird auf den Flächen aufgrund der angrenzenden landwirtschaftlichen Nutzungen auf der sicheren Seite liegend auch eine starke Verschmutzung über den Luftpfad angenommen (L4). Gem. DWA (2007) ist daher für die Versickerung eine Vorbehandlung notwendig.

Anlage 11 zeigt die Bemessung der Vorbehandlung gem. DWA-M 153 (DWA, 2007). Der Nachweis erfolgt exemplarisch für die Fahrwege, Lagerflächen und Folienabdeckungen, bei denen die Flächenbelastung A_u:A_S bei der Versickerung zwischen >5 und 15 liegt, sowie für die Dachflächen, bei denen die Flächenbelastung bei der Versickerung ≤5 beträgt. Die Berechnungen zeigen, dass im Falle der Fahrwege, Lagerflächen und Folienabdeckungen eine Versickerung durch eine 30 cm starke Schicht aus bewachsenem, humosem Oberboden als Vorbehandlung ausreicht (s. Anlage 11.1). Im ungestörten Zustand weist der humose Oberboden am betrachteten Standort laut der durchgeführten Sondierungen eine Stärke von ≥0,30 m auf. In den betroffenen Versickerungsanlagen ist, sollte dies noch nicht geschehen sein, eine 0,30 m starke Schicht aus humosem Oberboden einzubauen.

Im Falle der separaten Versickerung allein von Dachflächenwasser, wie z.B. bei den Versickerungsmulden 3 und 4, reicht gem. DWA (2007) eine 0,10 m starke Schicht aus bewachsenem, humosen Oberboden für die Vorbehandlung aus (s. Anlage 11.2). Im Hinblick auf die Standortnutzung ist jedoch auch hier im Sinne des Grundwasserschutzes zu empfehlen, eine 0,30 m stark Schicht aus humosem Oberboden einzubauen.

6 Unterschrift des Anlagenbetreibers und des Verfassers

Ort. Datum Anlagenbetreiber Verfasser			
Ort. Datum Anlagenbetreiber Vertasser			
	Ort. Datum	Anlagenbetreiber	Verfasser

Literatur

DWA (2005): Planung, Bau und Betrieb von Anlagen zur Versickerung von Niederschlagswasser. Arbeitsblatt DWA-A 138. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V., Hennef.

DWA (2006): Bemessung von Regenrückhalteräumen. Arbeitsblatt DWA-A 117. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V., Hennef.

DWA (2007): Handlungsempfehlungen zum Umgang mit Regenwasser. Merkblatt DWA-M 153. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V., Hennef.

Anlagen

Anlage 1: Übersichtskarte

Anlage 2: Entwässerungsplan

Anlage 3: Querschnitte Entwässerungseinrichtungen

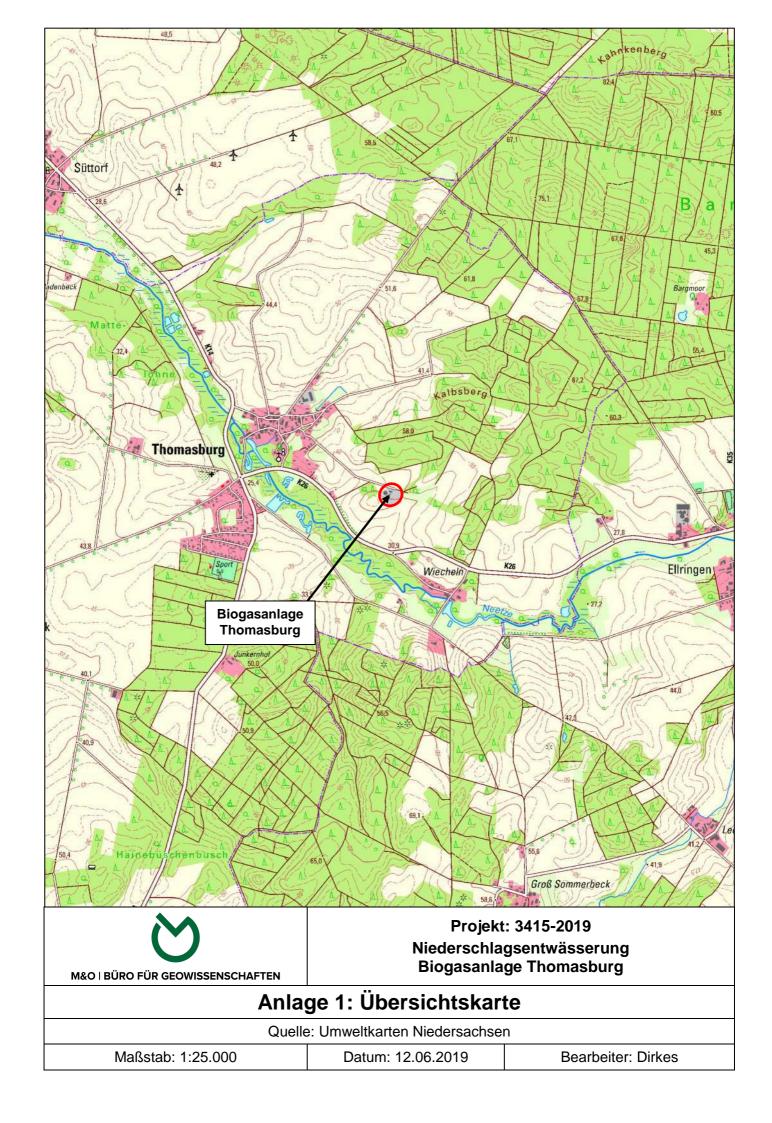
Anlage 4: Ausschnitt Baugrundgutachten

Anlage 5: Bohrprofile Rammkernsondierungen Büro für Geowissenschaften

Anlage 6: Teilflächen, Abflussbeiwerte und Abflussbewertung

Anlage 7: Hydraulische Bemessung Rohrleitungen gem. PRANDTL-COLEBROOK

Anlage 8: Bemessung Schmutzwasserschächte + Tauchpumpen gem. DWA-A 117


Anlage 9: Berechnung Speichervolumen pot. mit Silagesickersaft o.Ä. belastetes Niederschlagswasser

Anlage 10: Hydraulische Bemessung Versickerungsmulden gem. DWA-A 138


Anlage 11: Bewertung und Vorbehandlung des Regenwassersabflusses gem. DWA-M 153

Anlage 12: Niederschlagshöhen und -spenden für Thomasburg (KOSTRA-DWD)

Anlage 1: Übersichtskarte

Anlage 2: Entwässerungsplan

Anlage 3: Querschnitte Entwässerungseinrichtungen

Schmutzwasserschacht 1 Schmutzwasserschacht 2 (vorhanden) (neu) nutzbares Speichervolumen: nutzbares Speichervolumen: 16 m³ 10 m³ Druckleitung zum Gärrestspeicher 1 und zum Annahmebehälter Schieber (≥17 l/s) Druckleitungen -Druckleitungen zum Wasserspeicher zum Wasserspeicher (≥8,5 l/s) (≥8,5 l/s) Zuläufe Zulauf Rohrleitung SW 1+2 SW3 Verbindung DN 100 DN 300 DN 300 Tauchpumpe Tauchpumpe ≥8,5 l/s ≥8,5 l/s

Schacht ist ggf. gegen Auftrieb in Schichtwasser über Geschiebelehm zu sichern!

Projekt: 3415-2019-EK-BGA-Thomasburg

Anlage 3: Querschnitt Sickersaftschächte

Maßstab: 1:50 Datum: 12.06.2019

Bearbeiter: Witte Bildgröße: DIN A4 (210x297mm)

Anlage 4: Ausschnitt Baugrundgutachten

INGENIEURBÜRO FÜR BODENMECHANIK UND GRUNDBAU

Jürgen Buchheim, Dipl.-Ing. Bellevue 10, 23968 Gägelow Internet: www.baugrund-gutachten.de E-Mail: info@baugrund-gutachten.de Zulassungs Nr. Telefon Fax B-0648-95 (03841) 6262-0 (03841) 6262-29

Kenn.-Nr. 040-A-08

Gutachten

üher die

Baugrund- und Gründungsverhältnisse

Bauvorhaben: Errichtung einer Biogasanlage

in Thomasburg

Objekt: Gründung

gültig für: GK2

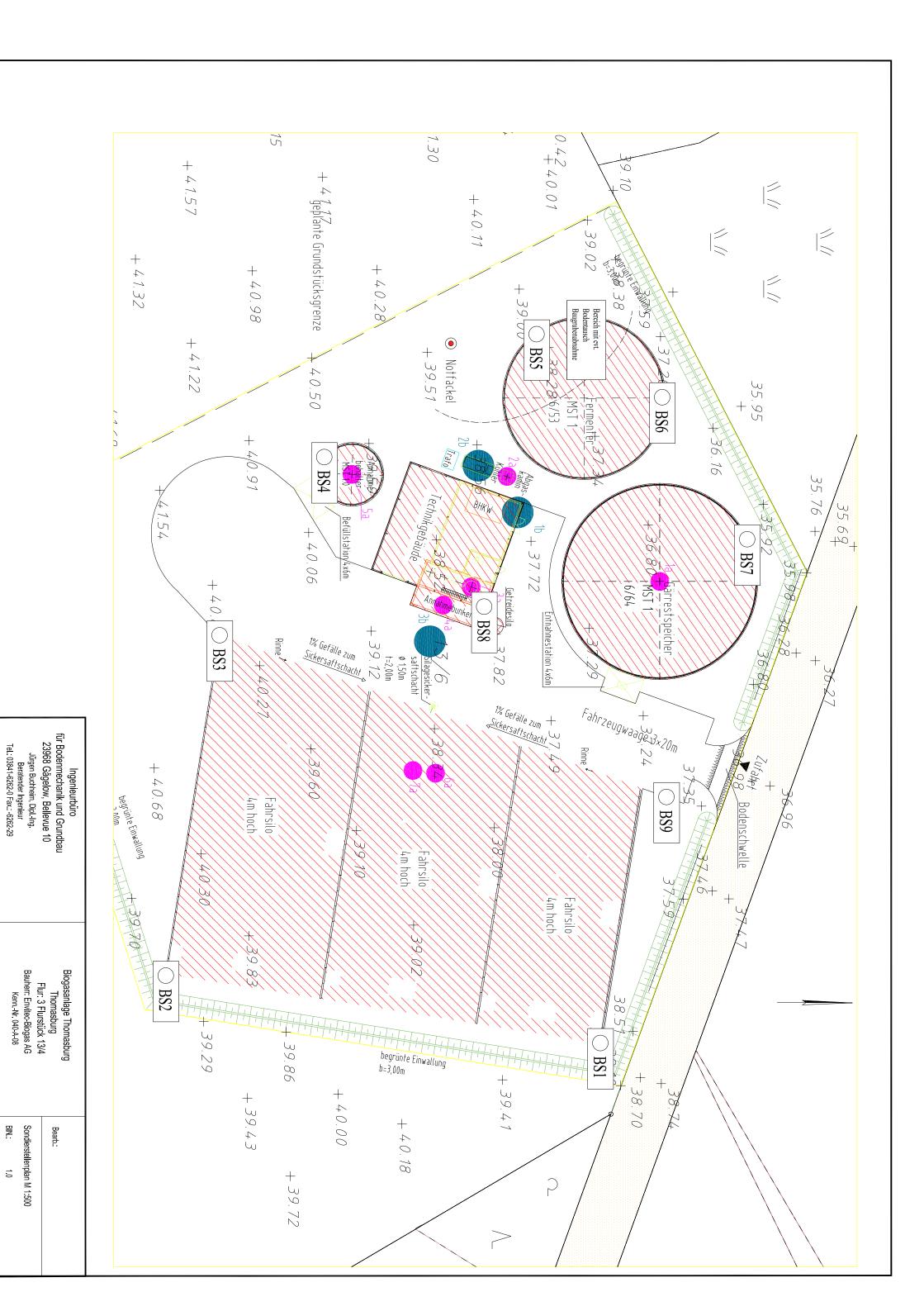
Auftraggeber: EnviTec-Biogas AG

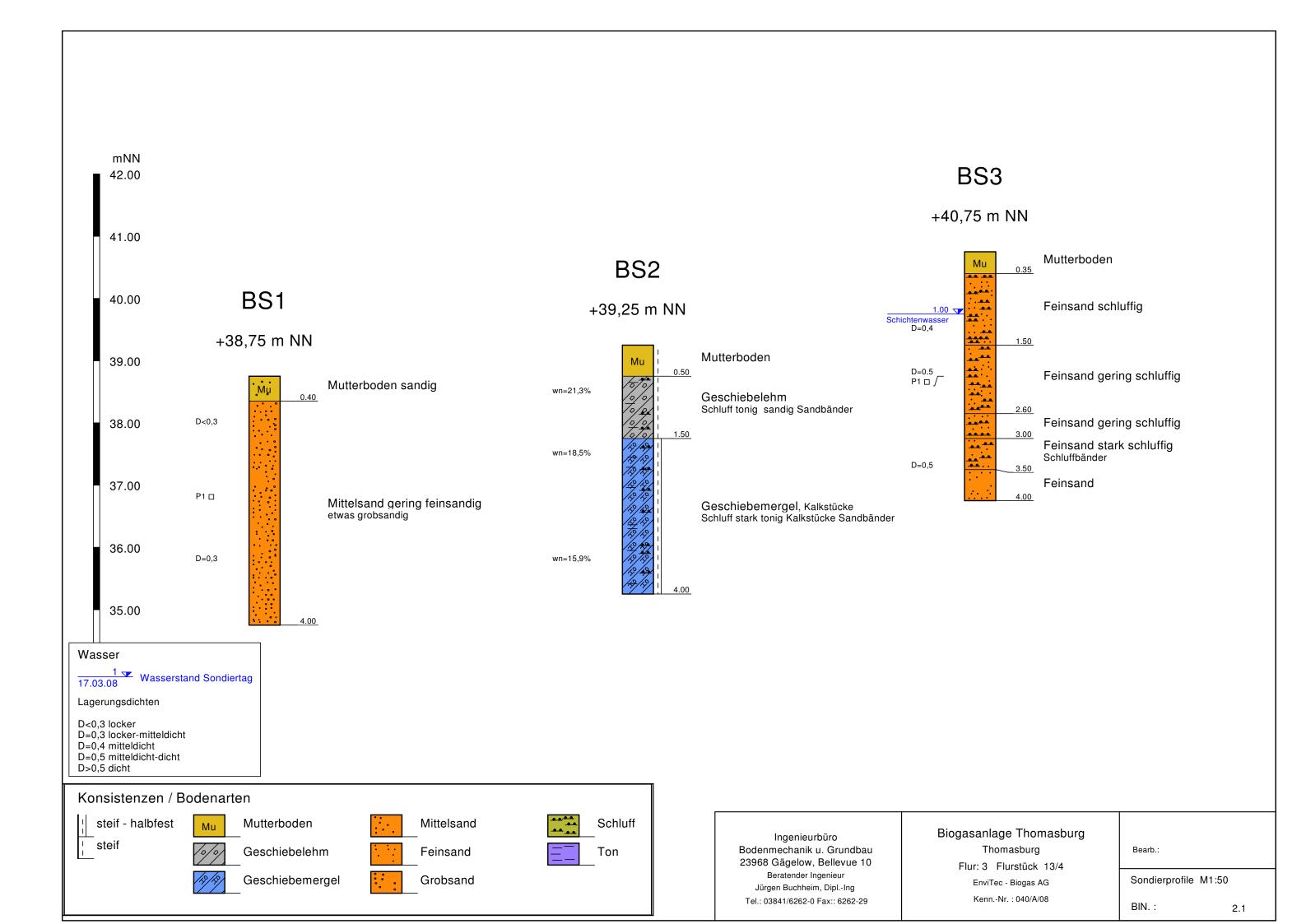
Industriering 10 a 49393 Lohne

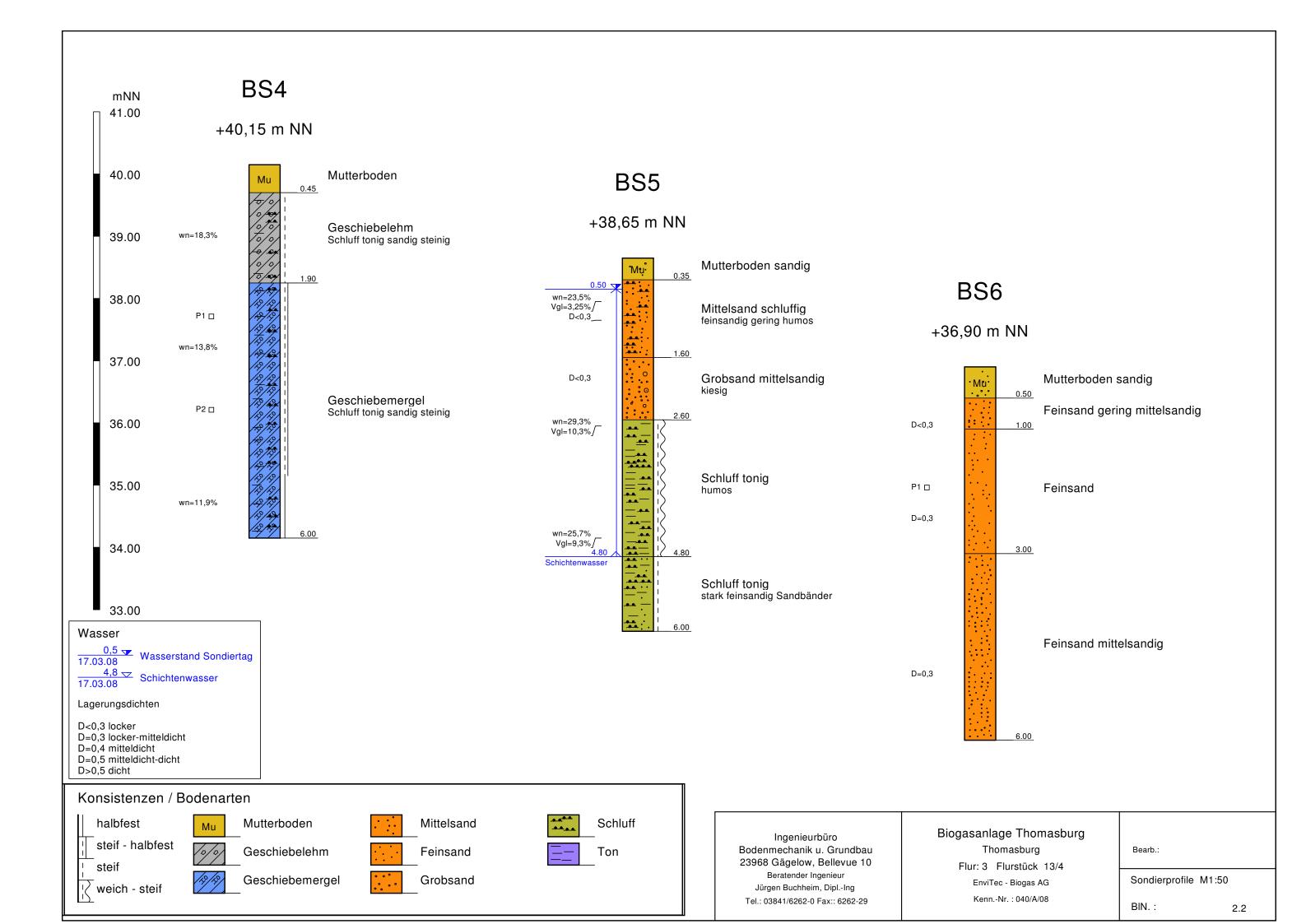
Bearbeiter: Dipl.- Ing. J. Morgner

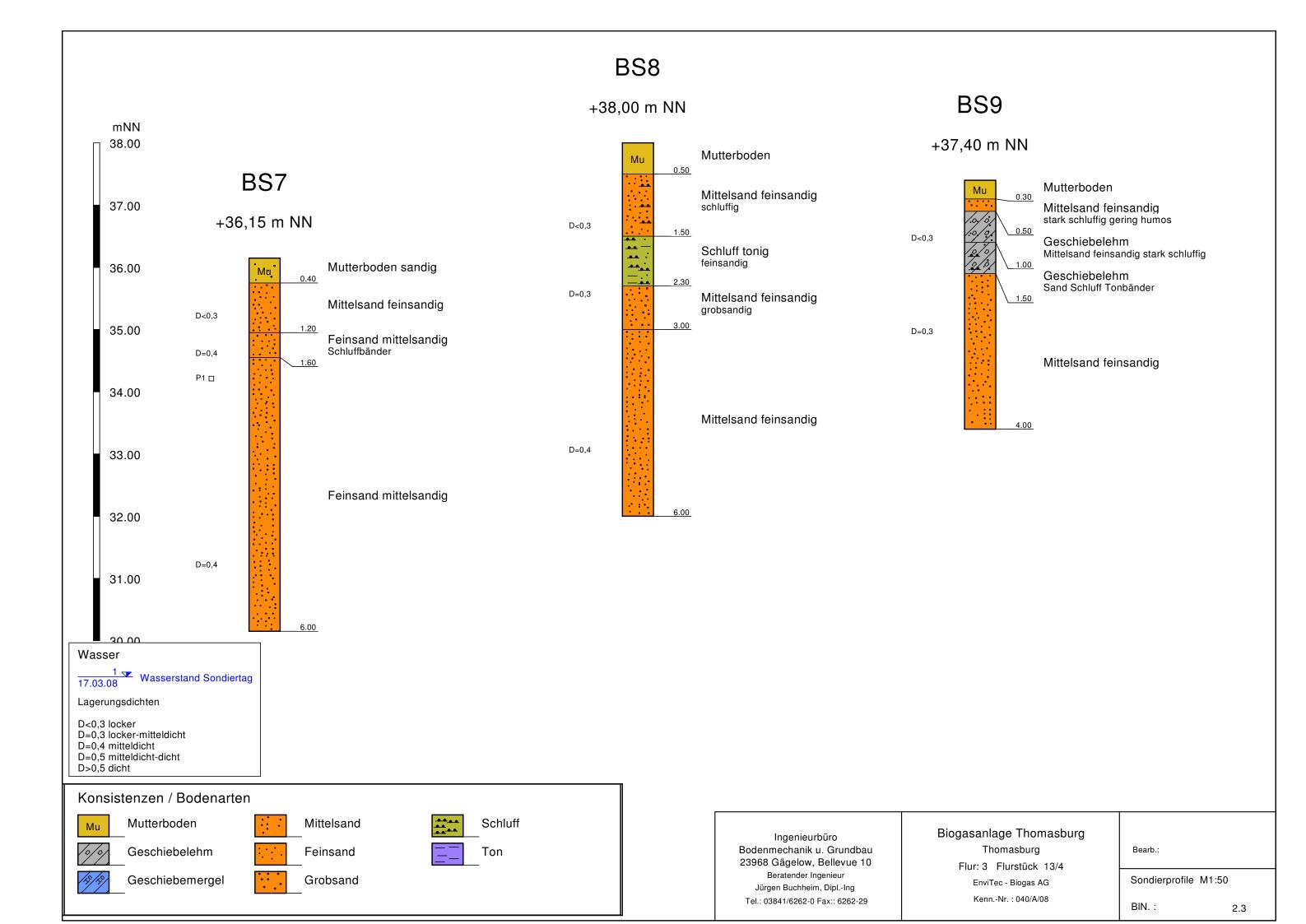
umfasst die Seiten: 1-14

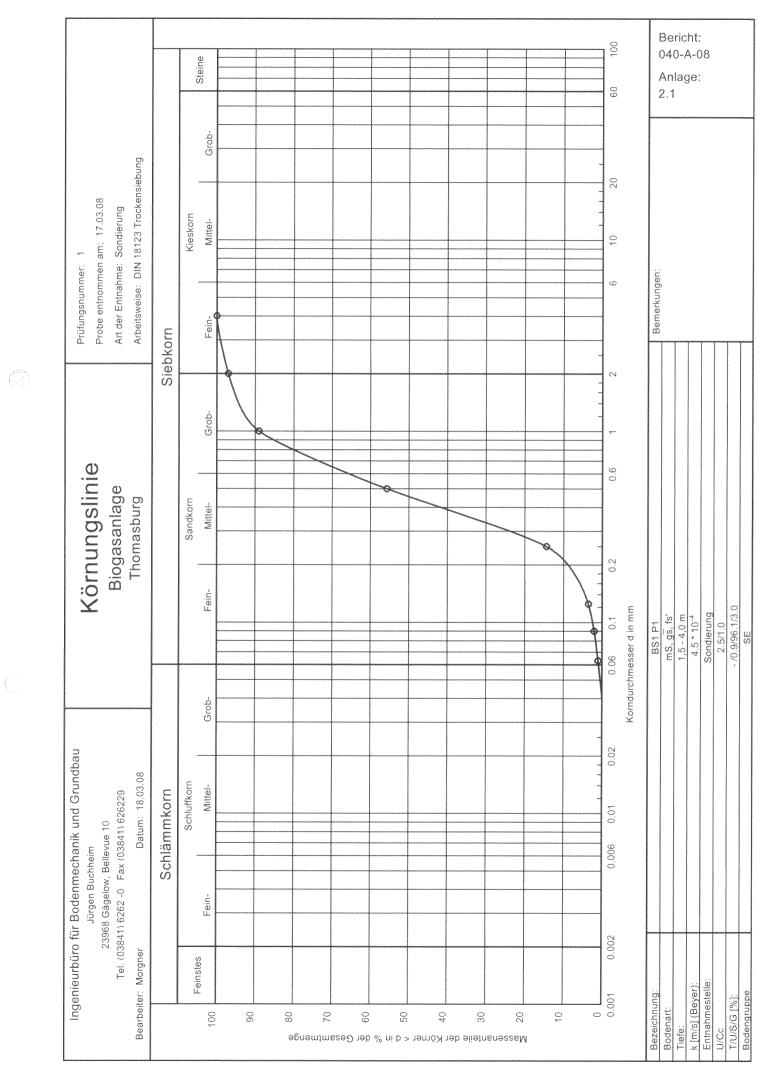
SondierstellenplanBIN.1.0SondierprofileBIN.2.1 - 2.3SchichtenverzeichnisAnlagen1.1 - 1.10SiebanalysenAnlagen2.1 - 2.2

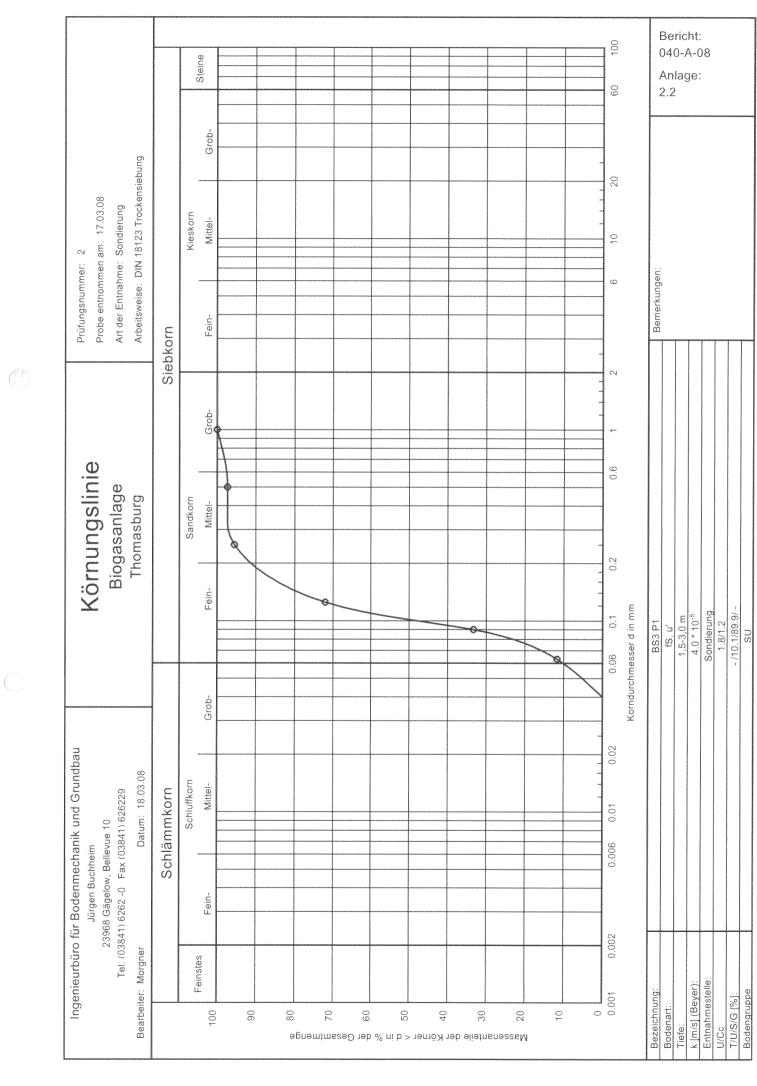

aufgestellt in: Gägelow, 25.03,08

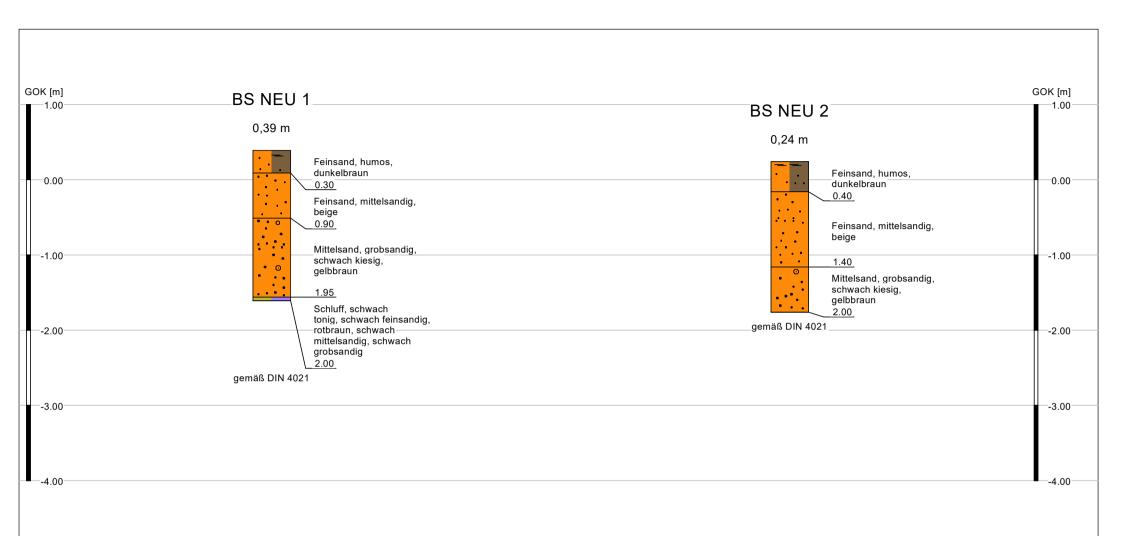

Jürgen Buchheim


Ing. für Baugrund


Konto: 44 07 911 BLZ: 130 610 78 Inhaber:


Dipl.-Ing. Jürgen Buchheim (FH) Gerichtsstand Grevesmühlen Steuer-Nr. 080/210/00818





Anlage 5:

Bohrprofile Rammkernsondierungen Büro für Geowissenschaften

Projekt: 3415-2019-EK

BGA, Hagenweg, 21401 Thomasburg

Anlage 5 Bohrprofile

Maßstab: Höhe: 1:50

Datum: 23.04.2019 Bearbeiter: Brengelmann

Anlage 6: Teilflächen, Abflussbeiwerte und Abflussbewertung

Anlage 6: Teilflächen, Abflussbeiwerte und Abflussbewertung

Verbleib Regenwa	Verbleib Regenwasserabfluss	Fläche	Flächengröße	Versiegelungsart	Abfluss-	undurch- lässige	Bewertung des Regenwasserabflusses nach DWA-M 153		
nicht verschmutzt mit Silagesickersaft o.Ä.	verschmutzt mit Silagesickersaft o.Ä.		[m²]		beiwert [-]	Fläche [m²]	Flächen- verschmutzung	Тур	Punkte
nur Folienabdeckung Silage:	Einleitung in Gärrest- oder	Fahrsilo 1 inkl. Betonwand	900	Asphalt	0,90	810	stark ^a	F6	35
Versickerung in Versickerungsmulde	Wasserspeicher über Schmutzwasserschacht, Ausbringung	Fahrsilo 2 inkl. Betonwand	1210	Asphalt	0,90	1089	stark ^a	F6	35
1 + 2 bzw. ungezielte Versickerung	auf landw. Nutzflächen	Fahrsilo 3 inkl. Betonwand	1357	Asphalt	0,90	1221	stark ^a	F6	35
		Fahrweg 1	266	Asphalt	0,90	239	-	-	-
		Fahrweg 2	177	Asphalt	0,90	159	-	-	-
Einleitung in Gärrest- oder Wasserspeic	her über Schmutzwasserschacht,	Fahrweg 3	248	Asphalt	0,90	223	-	-	-
Ausbringung auf land		Fahrweg 4	234	Asphalt	0,90	211	-	-	-
		Fahrweg 5	470	Asphalt	0,90	423	-	-	-
		Fahrzeugwaage	60	Beton	0,90	54	-	-	-
		Pflaster P1	24	Pflaster, geschlossenen Fugen	0,75	18	-	-	-
Einleitung in Gärrest- oder		Pflaster P2	39	Pflaster, geschlossenen Fugen	0,75	29	-	-	-
Wasserspeicher über Schmutzwasserschacht, Ausbringung auf	-	Pflaster P3	11	Pflaster, geschlossenen Fugen	0,75	8	-	-	-
landw. Nutzflächen		Gärrestseparation mit Abwurfplatte	47	Beton	0,90	42	-	-	-
		Abdeckung Feststoffeintrag	36	Dachfläche	0,95	34	-	-	-
		Technikgebäude b	49	Dachfläche	0,95	47	-	-	-
Einleitung in Speicherschacht, Verrieselung in Gärrestspeicher mi		Befüllstation	36	Beton	0,90	32	-	-	-
Versickerung in Versickerungsmulde 3		Technikgebäude a	259	Dachfläche	0,95	246	gering	F2	8
Versickerung in Versickerungsmulde 4		Gärrestspeicher 2	873	Dachfläche	0,95	829	gering	F2	8
		Pflaster P4	115	Pflaster, geschlossenen Fugen	0,75	86	stark	F6	35
		Fermenter	535	Dachfläche	0,95	508	gering	F2	8
		Gärrestspeicher 1	775	Dachfläche	0,95	736	gering	F2	8
ungezielte Versickerung	-	Annahmebehälter	82	Dachfläche	0,95	78	gering	F2	8
		Trocknung	33	Dachfläche	0,95	31	gering	F2	8
		Container	59	Dachfläche	0,95	56	gering	F2	8
		Schotter Trocknung + Container	33	Schotter	0,50	17	stark	F6	35
Ableitung auf Hagenweg, Versickerung im Wegeseitenraum		Fahrweg 6	187	Asphalt	0,90	168	stark	F6	35
Summe			8115			7397			•
Summe Schmutzwasserschacht	Summe Schmutzwasserschacht		5128			4608			
Summe Gärrestlager, gesamt	umme Gärrestlager, gesamt		5164			4641			
Summe Versickerung (ohne Folienabdeck	mme Versickerung (ohne Folienabdeckung Silage)					2756			

Anlage 7:

Hydraulische Bemessung Rohrleitungen gem. PRANDTL-COLEBROOK

Anlage 6: Bemessung Rohrleitungen nach PRANDTL-COLEBROOK

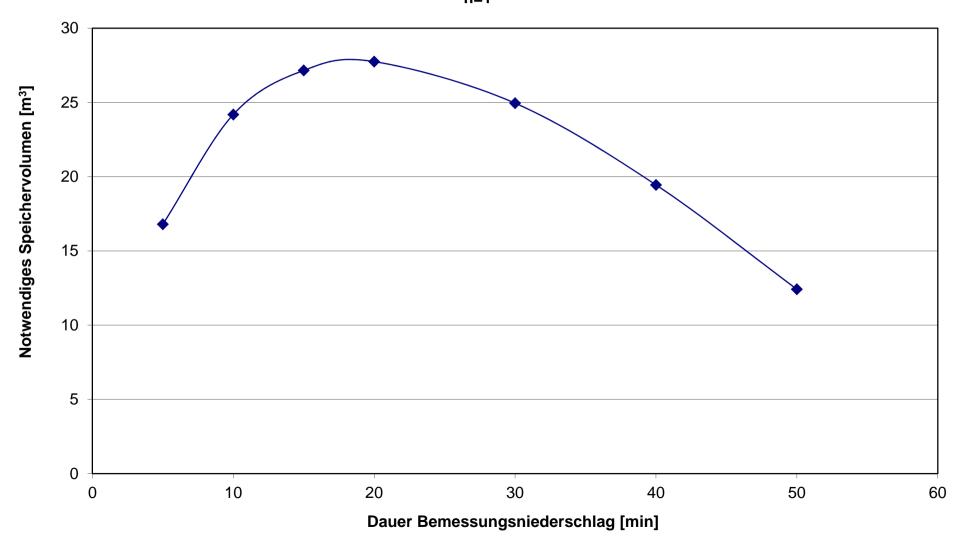
Leitung	RW 1	SW 1	SW 2	SW 3
angeschlossene undurchlässige Fläche [m²]	47	3344	1265	4608
im Bemessungsfall angeschlossen [%]	100	100	100	100
im Bemessungsfall angeschlossene undurchlässige Fläche [m²]	47	3344	1265	4608
Bemessungsregenspende (r _{D(n)})				
Stärke [l/(s*ha)]	102,2	102,2	102,2	102,2
Dauer (D) [min]	15,0	15,0	15,0	15,0
Häufigkeit (n) [1/a]	1,0	1,0	1,0	1,0
Bemessungsabfluss [l/s]	0,5	34,2	12,9	47,1
Innendurchmesser Rohr d _i [mm]	100	100	100	300
Gefälle Rohr [m/m]	0,0100	0,0100	0,0100	0,0033
Betriebliche Rauheit Rohr k _b [mm]	1,00	1,00	1,00	1,00
Füllungsgrad Rohr h/d _i [-]	0,21	1,00	1,00	0,67
durchströmte Querschnittsfläche A [m²]	0,0012	0,0079	0,0079	0,0505
benetzter Umfang [m]	0,0952	0,3142	0,3142	0,5766
hydraulischer Durchmesser Rohr d _h [m]	0,05	0,10	0,10	0,35
kinematische Zähigkeit Wasser v [m²/s]	1,31E-06	1,31E-06	1,31E-06	1,31E-06
Fließgeschwindigkeit im Rohr v [m/s]	0,44	0,71	0,71	0,93
Abfluss Rohr Q [I/s]	0,5	5,6	5,6	47,1
Differenz zu Bemessungsabfluss [I/s]	0,1	-28,6	-7,4	0,0

Anlage 8:

Bemessung Schmutzwasserschächte + Tauchpumpen gem.

DWA-A 117

Anlage 8.1: Bemessung Schmutzwasserschächte + Tauchpumpen gem. DWA-A 117


Berechnung erforderliches Retentionsvolumen				
Fläche direktes Einzugsgebiet A _E , gesamt [m²]	5128			
undurchlässige Fläche, berechnet A _U , gesamt [m²]	4608			
Fläche direktes Einzugsgebiet A _E , im Bemessungsfall [m²]	5128			
undurchlässige Fläche, berechnet A _U , im Bemessungsfall [m²]	4608			
Bemessungsregenspende (KOSTRA-DWD-Daten)				
Stärke r _{D,n} [l/s/ha]	86,9			
Dauer D [min]	20			
Häufigkeit n [1/a]	1			
mittlere Trockenwetterabflussspende qT,d,aM [l/s/ha]	0,250			
mittlerer Trockenwetterabfluss des direkten Einzugsgebietes Q _{T,d,aM} [l/s]	0,1			
Summe Drosselabflüsse aller oberhalb liegender Vorentlastungen Q _{Dr, V} [l/s]	0			
Zufluss zum Wasserspeicher im Bemessungsfall [l/s]	40,2			
gewählter Drosselabfluss Q _{Dr} = Pumpenleistung [l/s]	17,0			
Drosselabflussspende q _{Dr,AE} [l/s/ha]	33,2			
Regenanteil der Drosselabflussspende der undurchlässigen Flächen q _{Dr,R,u} [l/s/ha]	33,6			
Zuschlagsfaktor f _Z [-]	1,0			
längster Fließweg [m]	72			
Fließzeit t _f [min]	1,4			
Hilfsfunktion f ₁ [-]	1,00			
Überschreitungshäufigkeit	0,2			
Abminderungsfaktor f _A [-]	1,00			
Spezifisches Retentionsvolumen bezogen auf A _U [m³/ha]	60			
erforderliches Retentionsvolumen V [m³]	27,7			

Berechnung vorhandenes Retentionsvolumen				
nutzbares Retentionsvolumen Schmutzwasserschächte 1+ 2 [m³]	26,0			
nutzbares Retentionsvolumen angeschlossene Rohrleitungen [m³]	1,7			
vorhandenes nutzbares Retentionsvolumen gesamt [m³]	27,7			

Anlage 8.2: Erforderliches Retentionsvolumen Schmutzwasserschächte 1+2 und angeschlossene Rohrleitungen in Abhängigkeit von der Dauer des gewählten Bemessungsniederschlages

(KOSTRA-DWD-Daten)
n=1

Anlage 9:

Berechnung Speichervolumen pot. mit Silagesickersaft o.Ä. belastetes Niederschlagswasser

Anlage 9: Berechnung Speichervolumen pot. mit Silagesickersaft o.Ä. belastetes Niederschlagswasser

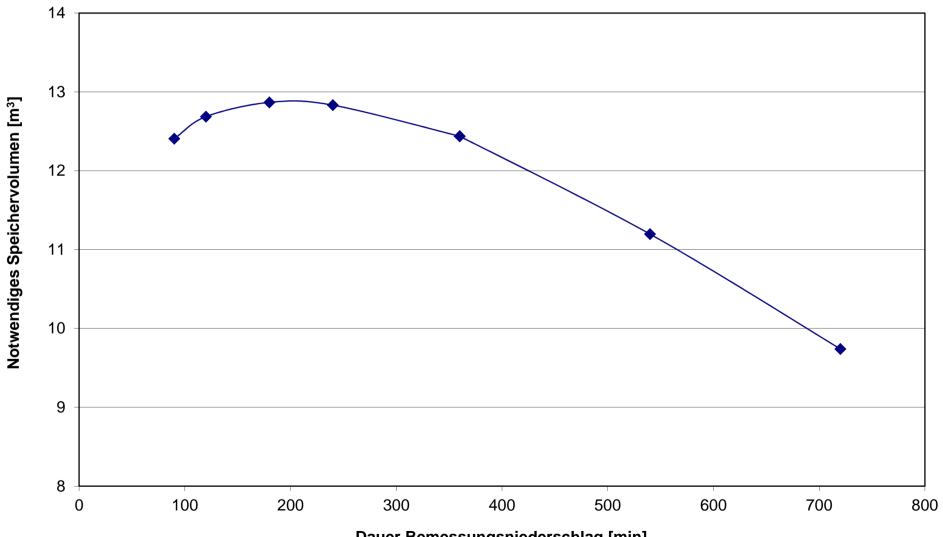
Bemessungszeitraum [Monat]	3,0
angeschlossene undurchlässige Fläche A _U [m²]	4641
davon im Mittel im Bemessungszeitraum angeschlossen [%]	66 ^a
im Bemessungszeitraum angeschlossene undurchlässige Fläche [m²]	3081 ^a
Jahresniederschlag [mm/a]	692,0 ^b
im Bemessungszeitraum anfallende Niederschlagsmenge = erforderliches Speichervolumen [m³]	533

^aFahrsilo 1 bis 3: 50 %, sonstige Flächen: 100 %

^bDWD, Mittelwert 1981-2010, Station Reinstorf-Holzen

Anlage 10:

Hydraulische Bemessung Versickerungsmulden gem. DWA-A 138


Anlage 10.1.1: Bemessung Versickerungsmulde 1 gem. DWA-A 138

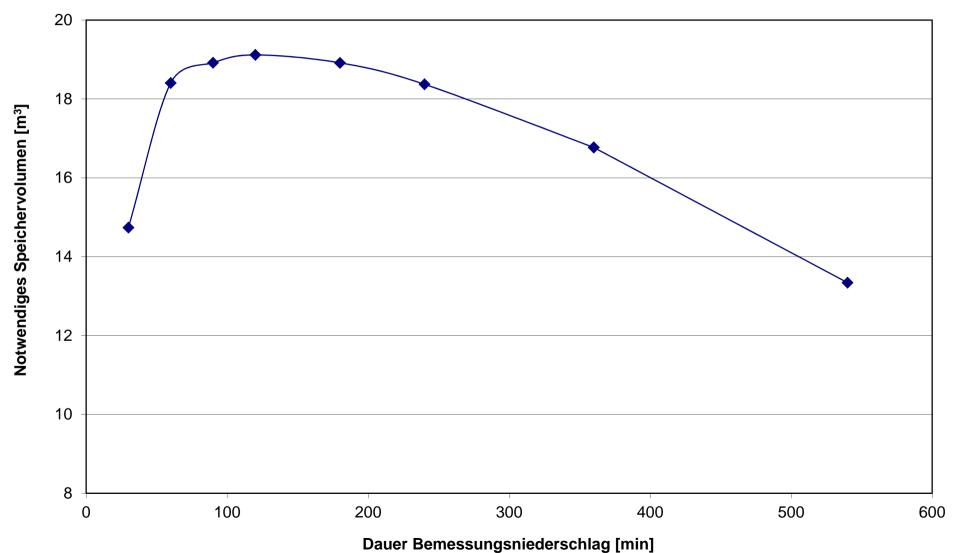
undurchlässige angeschlossene Fläche, berechnet (A _U) [m ²]	405
Bemessungsregenspende (r _{D(n)})	
Stärke [l/(s*ha)]	28,2
Dauer (D) [min]	180
Häufigkeit (n) [1/a]	0,2
Zufluss zur Versickerungsfläche (Q _{zu}) [I/s]	1,1
Zuschlagsfaktor (f _z) [-]	1,1
Durchlässigkeitsbeiwert gesättigte Zone (k _f) [m/s]	8,0E-06
Durchlässigkeitsbeiwert ungesättigte Zone (k _u) [m/s]	4,0E-06
Hydraulisches Gefälle (I _{hy}) [m/m]	1
A _U / A _S (IST)	8,1
Spezifische Versickerungsrate (q _s) [l/(s*ha)]	4,9
Abmessungen Mulde	
Mindest-Tiefe [m]	0,40
Böschungsneigung [1:]	1,25
Fläche an GOK [m²]	60
Sohlfläche [m²]	37
Versickerungsfläche im Bemessungsfall (A _S) [m ²]	50
Speichervolumen (V), SOLL [m³]	12,9
Einstauhöhe im Bemessungsfall (z _M) [m]	0,26
Speichervolumen bis Wasserstand Bemessungsfall (V), IST [m³]	12,9
Mindest-Freibord im Bemessungsfall [m]	0,14
Entleerungszeit im Bemessungsfall (t _E) [h]	17,8

Anlage 10.1.2: Notwendiges Speichervolumen in Versickerungsmulde 1 in Abhängigkeit von der Dauer des gewählten Bemessungsniederschlages

8

(Daten: KOSTRA DWD) n=0,2

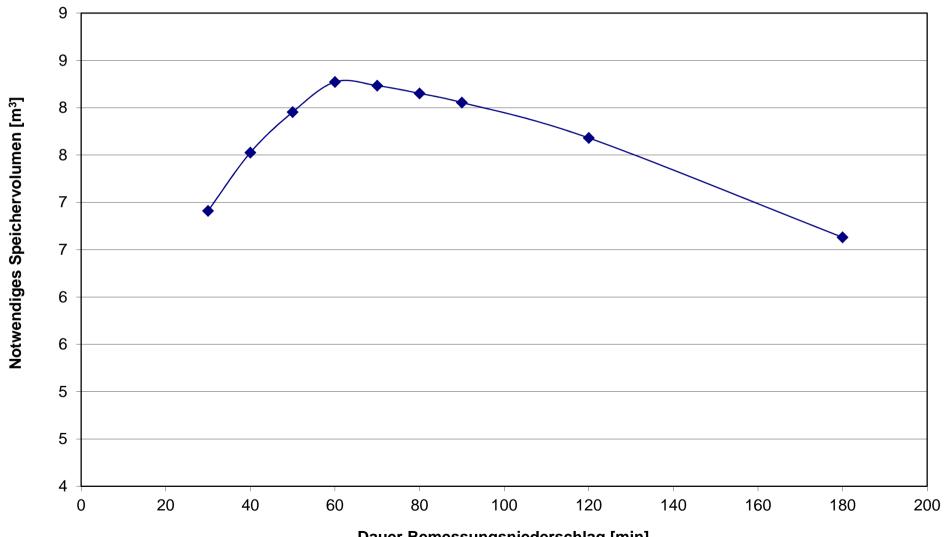
Dauer Bemessungsniederschlag [min]


Anlage 10.2.1: Bemessung Versickerungsmulde 2 gem. DWA-A 138

unc	urchlässige angeschlossene Fläche, berechnet (A _U) [m²]	611
Ber	nessungsregenspende (r _{D(n)})	
	Stärke [l/(s*ha)]	39,6
	Dauer (D) [min]	120
	Häufigkeit (n) [1/a]	0,2
Zuf	luss zur Versickerungsfläche (Q _{zu}) [l/s]	2,4
Zus	chlagsfaktor (f _z) [-]	1,1
Dur	chlässigkeitsbeiwert gesättigte Zone (k _f) [m/s]	8,0E-06
Dur	chlässigkeitsbeiwert ungesättigte Zone (k _u) [m/s]	4,0E-06
Hyd	Iraulisches Gefälle (I _{hy}) [m/m]	1
A _U	A _S (IST)	5,6
Spe	ezifische Versickerungsrate (q _S) [l/(s*ha)]	7,2
Abr	nessungen Mulde	
	Mindest-Tiefe [m]	0,40
	Böschungsneigung [1:]	1,25
	Fläche an GOK [m²]	130
	Sohlfläche [m²]	100
Ver	sickerungsfläche im Bemessungsfall (A _S) [m ²]	110
Speichervolumen (V), SOLL [m³]		19,1
Einstauhöhe im Bemessungsfall (z _M) [m]		0,17
Spe	eichervolumen bis Wasserstand Bemessungsfall (V), IST [m³]	19,1
Mir	dest-Freibord im Bemessungsfall [m]	0,23
Ent	leerungszeit im Bemessungsfall (t _E) [h]	12,1

Anlage 10.2.2: Notwendiges Speichervolumen in Versickerungsmulde 2 in Abhängigkeit von der Dauer des gewählten Bemessungsniederschlages

(Daten: KOSTRA DWD) n=0,2

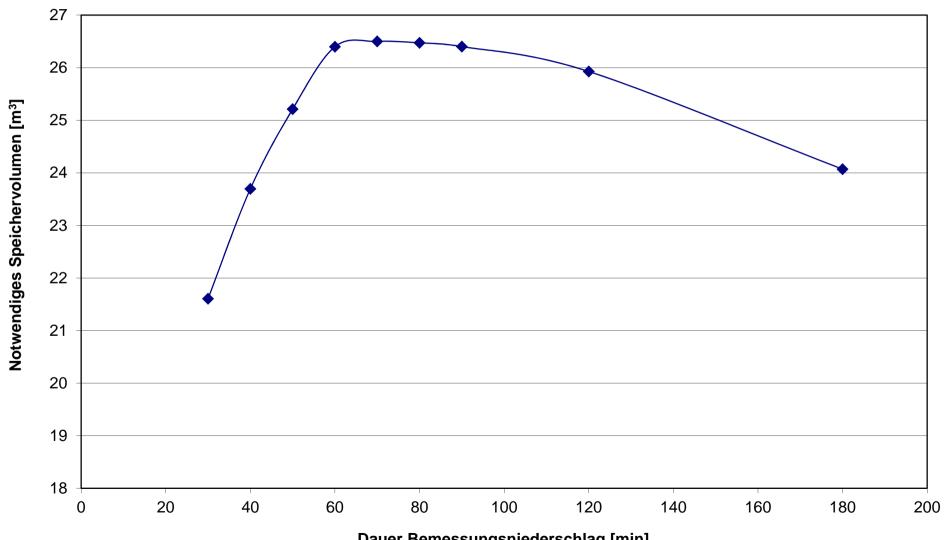


Anlage 10.3.1: Bemessung Versickerungsmulde 3 gem. DWA-A 138

undurchlässige angeschlossene Fläche, berechnet (A _U) [m ²]	246
Bemessungsregenspende (r _{D(n)})	
Stärke [l/(s*ha)]	70,6
Dauer (D) [min]	60
Häufigkeit (n) [1/a]	0,2
Zufluss zur Versickerungsfläche (Q _{zu}) [l/s]	1,7
Zuschlagsfaktor (f _z) [-]	1,1
Durchlässigkeitsbeiwert gesättigte Zone (k _f) [m/s]	8,0E-06
Durchlässigkeitsbeiwert ungesättigte Zone (k _u) [m/s]	4,0E-06
Hydraulisches Gefälle (I _{hy}) [m/m]	1
A _U / A _S (IST)	2,1
Spezifische Versickerungsrate (q _S) [l/(s*ha)]	18,7
Abmessungen Mulde	
Mindest-Tiefe [m]	0,40
Böschungsneigung [1:]	1,25
Fläche an GOK [m²]	140
Sohlfläche [m²]	110
Versickerungsfläche im Bemessungsfall (A _S) [m ²]	115
Speichervolumen (V), SOLL [m³]	8,3
Einstauhöhe im Bemessungsfall (z _M) [m]	0,07
Speichervolumen bis Wasserstand Bemessungsfall (V), IST [m³]	8,3
Mindest-Freibord im Bemessungsfall [m]	0,33
Entleerungszeit im Bemessungsfall (t _E) [h]	5,0

Anlage 10.3.2: Notwendiges Speichervolumen in Versickerungsmulde 3 in Abhängigkeit von der Dauer des gewählten Bemessungsniederschlages

(Daten: KOSTRA DWD) n=0,2


Dauer Bemessungsniederschlag [min]

Anlage 10.4.1: Bemessung Versickerungsmulde 4 gem. DWA-A 138

undurchlässige angeschlossene Fläche, berechnet (A _U) [m²]	829
Bemessungsregenspende (r _{D(n)})	
Stärke [l/(s*ha)]	62,1
Dauer (D) [min]	70
Häufigkeit (n) [1/a]	0,2
Zufluss zur Versickerungsfläche (Q _{zu}) [l/s]	5,2
Zuschlagsfaktor (f _Z) [-]	1,1
Durchlässigkeitsbeiwert gesättigte Zone (k _f) [m/s]	8,0E-06
Durchlässigkeitsbeiwert ungesättigte Zone (k _u) [m/s]	4,0E-06
Hydraulisches Gefälle (I _{hy}) [m/m]	1
A _U / A _S (IST)	3,1
Spezifische Versickerungsrate (q _S) [l/(s*ha)]	12,8
Abmessungen Mulde	
Mindest-Tiefe [m]	0,50
Böschungsneigung [1:]	1,25
Fläche an GOK [m²]	340
Sohlfläche [m²]	250
Versickerungsfläche im Bemessungsfall (A _s) [m ²]	265
Speichervolumen (V), SOLL [m³]	26,5
Einstauhöhe im Bemessungsfall (z _M) [m]	0,10
Speichervolumen bis Wasserstand Bemessungsfall (V), IST [m³]	26,5
Mindest-Freibord im Bemessungsfall [m]	0,40
Entleerungszeit im Bemessungsfall (t _E) [h]	6,9

Anlage 10.4.2: Notwendiges Speichervolumen in Versickerungsmulde 4 in Abhängigkeit von der Dauer des gewählten Bemessungsniederschlages

(Daten: KOSTRA DWD) n=0,2

Dauer Bemessungsniederschlag [min]

Anlage 11:

Bewertung und Vorbehandlung des Regenwassersabflusses gem. DWA-M 153

Anlage 11.1: Bewertung und Vorbehandlung des Regenwassersabflusses gem. DWA-M 153 – Fahrwege, Lagerflächen, Folienabdeckung Silage

Bewertung des Gewässers					
Art des Gewässers, in das eingeleitet / versickert werden soll	Grundwasser außerhalb Trinkwasserschutzgebiet				
Gewässertyp		G12	2		
Gewässerpunktezahl		10			
Abfluesbalestung					
Abflussbelastung Teilfläche-Nr.	1 1	2	3	Gesamtfläche	
Beschreibung	Fahrwege, Lagerflächen, Folienabdeckung Maissilage		3	-	
Belastung aus der Fläche					
undurchlässige Fläche [m²]	3391			3391	
Anteil an Gesamtfläche [%]	100				
für Bewertung relevante undurchlässige Fläche [m²]	3391			3391	
Anteil an für Bewertung relevanter Fläche [%]	100				
Flächenverschmutzung	stark			-	
Тур	F6			-	
Punkte	35			35,0	
				•	
Einflüsse aus der Luft					
Luftverschmutzung	stark			-	
Тур	L4			-	
Punkte	8			8,0	
Abflussbelastung, Punkte	43			43,0	
maximal zulässiger Durchgangswert		0,23	3		
Durchgangswert bei Bodenpassage					
Flächenbelastung: A _U / A _S		>5 - 1	15		
Beschreibung	Versickerung dur			en Oberboden	
Stärke Oberboden [cm]	30				
Тур	D1				
Wert	0,20				
Durchgangswert aus allen Vorbehandlungsarten	arten 0,20				
Emissionswert		8,6			
Emissionswert / Gewässerpunktezahl		0,86	6		
Soll erreicht?	Ja				

Anlage 11.1: Bewertung und Vorbehandlung des Regenwassersabflusses gem. DWA-M 153 – Dachflächen

Bewertung des Gewässers					
Art des Gewässers, in das eingeleitet / versickert werden soll	Grundwasser außerhalb Trinkwasserschutzgebiet				
Gewässertyp		G12	2		
Gewässerpunktezahl		10			
Abflussbelastung					
Teilfläche-Nr.	1	2	3	Gesamtfläche	
Beschreibung	Dachflächen			-	
Belastung aus der Fläche	1	I	l	1	
undurchlässige Fläche [m²]	2485			2485	
Anteil an Gesamtfläche [%]	100				
für Bewertung relevante undurchlässige Fläche [m²]	2485			2485	
Anteil an für Bewertung relevanter Fläche [%]	100				
Flächenverschmutzung	gering			-	
Тур	F2			-	
Punkte	8			8,0	
Einflüsse aus der Luft					
Luftverschmutzung	stark			_	
Тур	L4			_	
Punkte	8			8,0	
Abflussbelastung, Punkte	16			16,0	
maximal zulässiger Durchgangswert		0,63	B		
Durchgangswert bei Bodenpassage					
Flächenbelastung: A _U / A _S		<5			
Beschreibung	Versickerung du		achsen	en Oberboden	
Stärke Oberboden [cm]	10				
Тур	D3				
Wert	0,45				
Durchgangswert aus allen Vorbehandlungsarten		0,45	i		
Emissionswert		7,2			
Emissionswert / Gewässerpunktezahl		0,72	2		
Soll erreicht?	Ja				

Anlage 12:

Niederschlagshöhen und -spenden für Thomasburg (KOSTRA-DWD)

KOSTRA-DWD 2010R

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Niederschlagsspenden nach **KOSTRA-DWD 2010R**

Rasterfeld : Spalte 40, Zeile 26 Ortsname : Thomasburg (NI)

Bemerkung

Zeitspanne : Januar - Dezember

Dauerstufe	Niederschlagspenden rN [l/(s·ha)] je Wiederkehrintervall T [a]									
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a	
5 min	158,2	199,3	223,4	253,8	295,0	336,1	360,2	390,6	431,8	
10 min	124,2	154,3	171,9	194,1	224,2	254,4	272,0	294,2	324,3	
15 min	102,2	127,3	142,0	160,5	185,6	210,6	225,3	243,8	268,9	
20 min	86,9	108,9	121,8	138,0	160,1	182,1	195,0	211,2	233,2	
30 min	66,8	85,1	95,9	109,4	127,7	146,1	156,8	170,3	188,7	
45 min	49,6	64,9	73,8	85,1	100,4	115,6	124,6	135,8	151,	
60 min	39,4	52,9	60,7	70,6	84,0	97,4	105,3	115,2	128,	
90 min	28,8	38,1	43,5	50,3	59,6	68,8	74,2	81,1	90,3	
2 h	23,0	30,1	34,3	39,6	46,7	53,8	57,9	63,2	70,3	
3 h	16,8	21,7	24,6	28,2	33,1	38,0	40,9	44,5	49,4	
4 h	13,4	17,2	19,4	22,2	26,0	29,7	32,0	34,7	38,5	
6 h	9,8	12,4	13,9	15,9	18,5	21,1	22,6	24,5	27,1	
9 h	7,2	9,0	10,0	11,3	13,1	14,9	16,0	17,3	19,1	
12 h	5,7	7,1	7,9	8,9	10,3	11,7	12,5	13,5	14,9	
18 h	4,2	5,1	5,7	6,4	7,3	8,3	8,9	9,6	10,5	
24 h	3,3	4,1	4,5	5,0	5,8	6,5	6,9	7,5	8,2	
48 h	2,1	2,5	2,8	3,1	3,5	3,9	4,2	4,5	4,9	
72 h	1,6	1,9	2,1	2,3	2,6	2,9	3,1	3,3	3,6	

Legende

Т Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder überschreitet

D Dauerstufe in [min, h]: definierte Niederschlagsdauer einschließlich Unterbrechungen

rΝ Niederschlagsspende in [l/(s·ha)]

Für die Berechnung wurden folgende Klassenwerte verwendet:

Wiederkehrintervall	Klassenwerte	Niederschlagshöhen hN [mm] je Dauerstufe						
wiederkennitervan	Klasseriwerte	15 min	60 min	24 h DWD-Vorgabe 28,90 DWD-Vorgabe 70,90	72 h			
1.5	Faktor [-]	DWD-Vorgabe	DWD-Vorgabe	DWD-Vorgabe	DWD-Vorgabe			
1 a	[mm]	9,20	14,20	28,90	41,90			
100 a	Faktor [-]	DWD-Vorgabe	DWD-Vorgabe	DWD-Vorgabe	DWD-Vorgabe			
	[mm]	24,20	46,30	70,90	93,00			

Wenn die angegebenen Werte für Planungszwecke herangezogen werden, sollte für rN(D;T) bzw. hN(D;T) in Abhängigkeit vom Wiederkehrintervall

bei 1 a ≤ T ≤ 5 a bei 5 a < T ≤ 50 a bei 50 a < T ≤ 100 a ein Toleranzbetrag von ±10 %, ein Toleranzbetrag von ±15 %, ein Toleranzbetrag von ±20 %

Berücksichtigung finden.